A Matrix Model for QCD

A. Queiroz, S. Vaidya and Bal

October, 2014
A reduced $3 \times N$-matrix model for $SU(N)$ gauge theory.

- Captures features of QCD like θ-vacua.
- Gives mass gap in gluon spectrum.
- "Predicts" different phases of QCD – one seems Color Superconductivity.
- Confirms colored states are mixed. \Rightarrow A new argument for color confinement.
On Gluons in Exact QCD

Call $A =$ Space of connections A.
We begin with wavefunctions Ψ:

$$\Psi : A \rightarrow \mathbb{C}$$

Gauss Law is:

$$D_i E_i \Psi = 0.$$

More precisely,

$$\left[\text{Tr} \int \left(D_i \Lambda \right) E_i \right] \Psi \equiv G(\Lambda) \Psi = 0, \quad \Lambda(\vec{x}) \rightarrow 0, \text{ as } |\vec{x}| \rightarrow \infty$$

$$\Lambda(\vec{x}) = \left(\Lambda(\vec{x})^a : a = 1, 2, \ldots N \right).$$

The group it generates is

$$G_0^\infty = \{ g : \vec{x} \rightarrow SU(N), \ g(\vec{x}) \rightarrow e \text{ as } |\vec{x}| \rightarrow \infty \}.$$

So by Gauss law

$$\Psi : A / G_0^\infty \rightarrow \mathbb{C}.$$
The Global Group $SU(N)$

- It is generated by
 \[\int Tr(D_i \mu) E_i = Q(\mu), \quad \mu \bigg|_{\infty} = \text{constant}. \]

 On the wave functions, only the global group $G / G_0^\infty = SU(N)$ acts nontrivially.

- We can use any $Q(\mu)$ as Charge:

 For any μ with fixed $\mu \bigg|_{\infty}$, $Q(\mu)$ all same on quantum states.

- Choice of constant μ for all \vec{x} gives standard charge.

- The representations of $G / G^\infty = SU(N)$ give colored wave functions.
Gribov Problem

- It is impossible to gauge fix for group G_0^∞:

 the bundle $G_0^\infty \to \mathcal{A} \to \mathcal{A}/G_0^\infty$ is twisted.

- **Locality**: Observables are
 - local
 - commute with Gauss law:

 $K = \text{observable, } [K, G(\Lambda)] = 0. \quad (1)$

- If K is supported in the region C, (1) depends only on

 $\Lambda \big|_C = \mu \big|_C$ for some μ.

- Conversely,

 $\mu \big|_C = \Lambda \big|_C$ for some Λ

 implies $[K, Q(\mu)] = 0$.

- Observables are color-singlets.
So state vectors can have global color, observables are color-singlets \implies colored states are mixed (see later).

- We cannot gauge fix for bundle

$$\mathcal{A}/G_0^\infty \xrightarrow{SU(N)} \mathcal{A}/G.$$

- Focus now on $SO(3)$ or $SU(2)$ for simplicity.
This feature is captured by connections

\[A_i = \frac{i}{2} \text{Tr} \left(\frac{\tau^a}{2} g^{-1} \partial_i g \right) M_{ab} \tau^b \]

where \(M_{ab} \) is real, \(\vec{x} \rightarrow g(\vec{x}) \) is any one-to-one map from \(\mathbb{R}^3 \) to \(SU(2) \) with

\[g|_{|\vec{x}|=\infty} = \text{constant map}. \]

Example: Skyrmion

\[g(\vec{x}) = \cos \theta(r) + i \vec{\tau} \cdot \hat{x} \sin \theta(r), \quad \theta(0) = 0, \quad \theta(\infty) = \pi. \]
Spatial Rotations:
\[g \rightarrow h^{-1}gh \]

or
\[
\text{Tr} \frac{\tau_a}{2} g^{-1} \partial_i g
\rightarrow
\text{Tr} \frac{h \tau_a h^{-1}}{2} g^{-1} \partial_i g
\]
\[= \text{Tr} \frac{\tau_c}{2} (g^{-1} \partial_i g)) \vec{x}) R_{ca}(h) \]

or \(M \rightarrow RM, \quad R \in SO(3) = \text{Group of spatial rotations.} \)

SO(3) gauge transformation
\[
A_i dx^i = \Omega \rightarrow h' \Omega h'^{-1}
\]

or
\[
M_{ab} \tau_b \rightarrow h' M_{ab} \tau_b h'^{-1} = M_{ab} \tau_c S_{cb}(h')
\]

or \(M \rightarrow MS^T, \quad S \in SO(3) = \text{Gauge group SO(3).} \)
Curvature F_{ij}

Choose vector fields L_i such that

$$L_i g = [g, \tau_i] = g\tau_i - \tau_i g$$

$$\implies A_i^a = iM_{ia}, \quad A_i = iM_{ia} \frac{\tau_a}{2}.$$

$$F_{ij} = i \left[\epsilon_{ijk} M_{ka} + \epsilon_{abc} M_{ib} M_{jc} \right] \frac{\tau_a}{2}.$$

Note:
The bundle $S : M \to \mathbf{MS}^T$, $S \in \text{color } SO(3)$:

$SO(3) \to \text{Mat}_3(\mathbb{R}) \to \text{Mat}_3(\mathbb{R})/SO(3)$
is twisted \iff the twist of QCD.
The potential $V(M)$

\[
V(M) = -\text{Tr}(F_{ij})^2
= \text{Tr}(M^T M) + 3\det(M) + \frac{1}{2} \left[\left(\text{Tr}(M^T M) \right)^2 - \text{Tr} \left((M^T M)^2 \right) \right].
\]

The matrix model for this potential has been studied:
Denjoe O’Connor and Rodrigo Delgadillo-Blando, Hoppe, Denjoe O’Connor and Filev,

Including Kinetic Energy ($A_0 = 0$):
Kinetic Energy in QCD = $\text{Tr}(\dot{A}_i)^2$.

For us: $A^\alpha_i = i M_{i\alpha}$.

So, kinetic energy for us = $\text{Tr}(\dot{M}^T \dot{M})$

Or electric field for us = $E_{i\alpha} = -i \frac{\partial}{\partial M_{i\alpha}}$

Or Hamiltonian:

$$H = \frac{1}{R} \left[-\frac{\partial^2}{(\partial M_{i\alpha})^2} + V(M) \right].$$
Hilbert space \mathcal{H} and its inner product

- Wave functions $\psi : M \rightarrow \mathbb{C}$.
- For scalar product, choose metric

$$ds^2 = tr(dM^T)(dM)$$

invariant under $M \rightarrow RMS^T$.
- Gives volume form: $dV = \prod_{i\alpha} dM_{i\alpha}$.
- So

$$(\psi, \chi) = \int \prod (dM_{i\alpha}) \bar{\psi}(M) \chi(M).$$
Separation of variables

- Singular Value Decomposition:

\[M = R \Delta S^T, \quad R, S \in SO(3) \]

\[\Delta = \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{pmatrix}, \quad a_1 \geq a_2 \geq a_3 \geq 0. \]

Focus on:

Zero angular momentum, color singlet.

Then

\[
dV = (a_1^2 - a_2^2)(a_2^2 - a_3^2)(a_1^2 - a_3^2) \prod (da_i) := \sqrt{g} \prod (da_i),
\]

\[
\sum \frac{\partial^2}{(\partial M_{i\alpha})^2} = \frac{\partial^2}{\partial a_i^2} + 2a_1 \left(\frac{1}{a_1^2 - a_2^2} + \frac{1}{a_1^2 - a_3^2} \right) + \text{cyclic.}
\]
For now, domain of Laplacian from smooth functions on M.
No special boundary conditions.
Integration over $a_1 \geq a_2 \geq a_3 \geq 0$.
Also,

$$V(M) = \frac{1}{2} a_i a_i - 2a_1 a_2 a_3 + \frac{1}{2} \left(a_1^2 a_2^2 + a_2^2 a_3^2 + a_3^2 a_1^2 \right).$$

Note: $V(M) \to \infty$ as $a_i \to \infty$ and $V(M) \geq 0$.
Hence expect a mass gap and only discrete levels.
The model has *naturally* defined **boundaries**.

They are like $r = 0$ of Laplacian on \mathbb{R}^3 in radial coordinates.

We can

- a) *either* treat $r = 0$ as a special point where say proton in hydrogen atom sits
- b) *or* treat it as coordinate singularity.

For **case a)**, a special boundary condition needed (See K.M. Case, Relativistic Hydrogen atom for Z>137).

Boundaries here: where volume form vanishes, that is $a_i = a_j$.
Meaning of boundaries

From

\[M = R \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{pmatrix} S^T, \]

if say \(a_1 = a_2 \),

\(M \rightarrow M, \) if \(R \rightarrow Rr(\theta), \) \(S \rightarrow Sr(\theta) \) where

\[r(\theta) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}. \]

Or

connection (holonomy) has higher symmetry.

Boundary conditions at these boundaries affect spectrum (work in progress).

Back to standard phase: Here we just work on \(\mathbb{R}^9 \).
Spectrum is gapped

Hamiltonian is

\[H = -\frac{1}{\sqrt{g}} \partial_i \sqrt{g} \partial_i + V(M), \quad V(M) > 0. \]

\[
(\psi, H\psi) = \int_{a_1 \geq a_2 \geq a_3 \geq 0} \prod da_i \sqrt{g} \psi^\dagger H \psi \\
= \int \prod da_i \sqrt{g} (\partial_i \psi)^\dagger (\partial_i \psi) + \int \prod da_i \sqrt{g} \psi^\dagger V(M) \psi > 0
\]

and cannot be zero.

So spectrum is gapped.
Colored states are mixed

- Observables K are color singlets.
- So consider, for example, a color octet vector in QCD:

$$|\cdot, \lambda\rangle, \quad \lambda = 1, 2 \cdots 8$$

Then,

$$P = \sum_\lambda |\cdot, \lambda\rangle \langle \cdot, \lambda|.$$

is a color singlet projector, hence an observable.

- So we can prepare state $|\cdot, P = 1\rangle$.
- But on observables K,

$$\langle \cdot, P = 1 | K | \cdot, P = 1 \rangle = \sum_\lambda \langle \cdot, \lambda | K | \cdot, \lambda \rangle$$

$$= \sum_\lambda \mu_\lambda \langle \cdot, \lambda | K | \cdot, \lambda \rangle \equiv \omega_\mu(K)$$

$$\sum \mu_\lambda = 1, \quad \mu_\lambda \geq 0.$$
Colored states are mixed

\[\omega_\mu = \sum_\lambda \mu_\lambda |\cdot, \lambda\rangle \langle \cdot, \lambda| . \]

Thus since

\[\langle \cdot, \lambda|K|\cdot, \lambda\rangle \]

is independent of \(\lambda \), \(K \) being a color singlet,

\[\omega_\mu(K) \text{ is independent of } \mu. \]

So \(|\cdot, P\rangle \langle \cdot, P| \) is a mixed state.

But we cannot observe \(|\cdot, \lambda\rangle \langle \cdot, \lambda| \) which is not a color singlet.

So we cannot prepare a pure state!

Hence a generic colored state on observables is mixed.
Remarks on Confinement

- Unitary evolution cannot map pure state to a mixed state.
- So by unitary evolution a pure color singlet state cannot split into two colored and hence mixed states.
- Related to confinement?
- One can also prove that

\[\sum \mu_\lambda \langle \cdot, \lambda | H | \cdot, \lambda \rangle = \infty \]

(2)

due to domain problems.

- For this conclusion (2), colored states must be mixed.